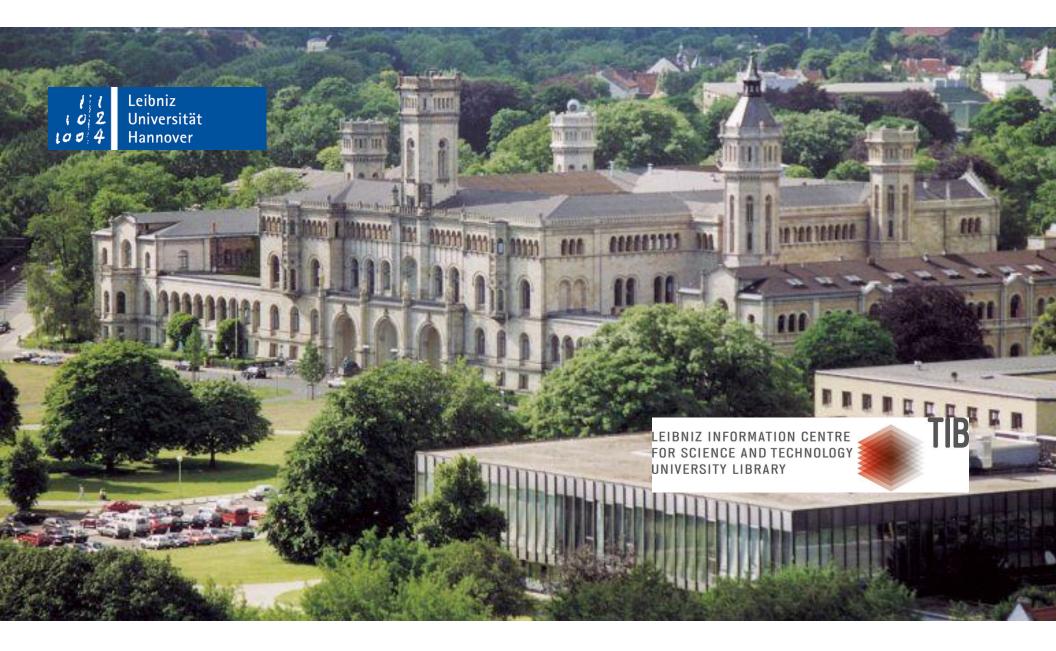
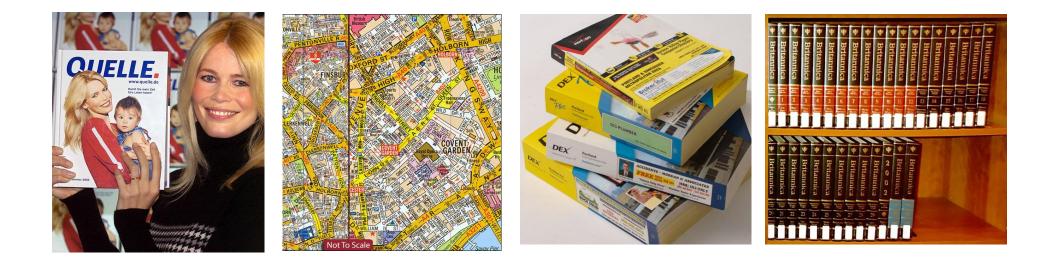

LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

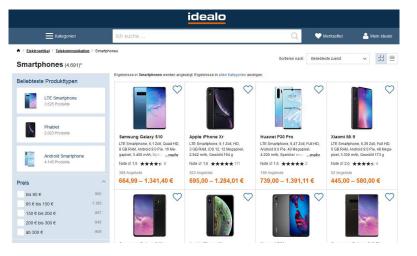


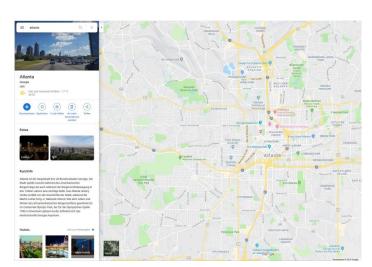

lil Leibniz OZ Universität too4 Hannover

From papers to knowledge: Representing scientific contributions in the Open Research Knowledge Graph

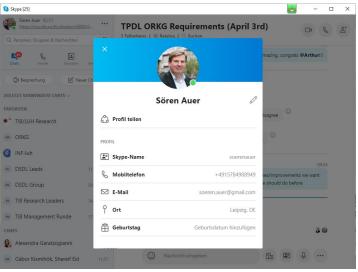
Prof. Dr. Sören Auer Leibniz University of Hannover TIB Technische Informationsbibliothek



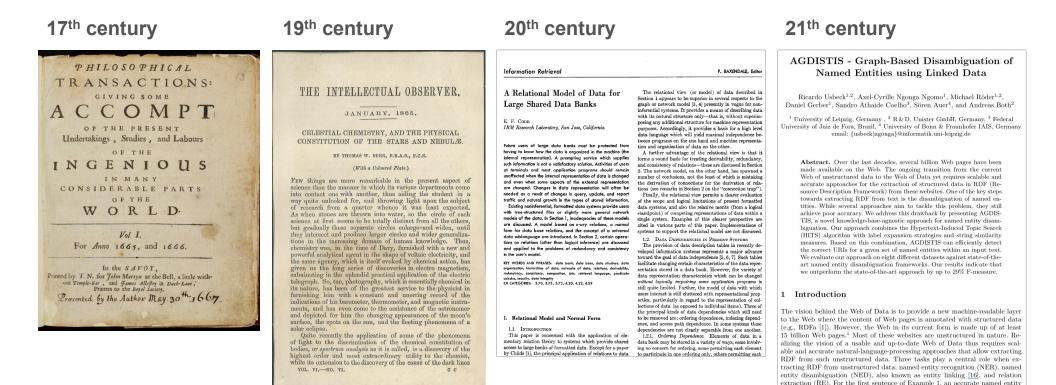




How did information flows change in the digital era?



How does it work today?


The World of Publishing & Communication has profundely changed

- New means adapted to the new possibilities were developed, e.g. szooming‰dynamics
- " Business models changed completely
- ⁷ More focus on data, interlinking of **data / services and search** in the data
- Integration, crowdsourcing, data curation play an important role

What about Scholarly Communication?

Scholarly Communication has not changed (much)

Meanwhile other information intense domains were completely disrupted: mail order catalogs, street maps, phone books, õ

Page 7

recognition approach would return the strings Barack Obama and Washington, D.C.. A high-quality DBpedia-based named entity disambiguation (NED) approach would use these already recognized named entities and map the strings ¹ Data gathered from http://www.worldwidewebsize.com/ on January 4th, 2014.

ΓΙΒ

We need to rethink the way how research is represented and communicated

Challenges we are facing:

Digitalisation of Science	Monopolisation by commercial actors	Reproducibility Crisis	Proliferation of publications	Deficiency of Peer Review
 Data integration and analysis Digital collaboration 	 Publisher look-in effects Maximization of profits ^[1] 	 Majority of experiments are hard or not reproducible ^[2] 	 Publication output doubled within a decade continues to rise ^[3] 	 Deteriorating quality ^[4] Predatory publishing

[1] http://thecostofknowledge.com, https://www.projekt-deal.de

M. Baker: <u>1.500 scientists lift the lid on reproducibility</u>, Nature, 2016.
 <u>Science and Engineering Publication Output Trends</u>, National Science Foundation, 2018.

[4] J. Couzin-Frankel: Secretive and Subjective, Peer Review Proves Resistant to Study. Science, 2013.

Proliferation of scientific literature

	Region, country, or			Average annual	2014 world	2014 cumulative
Rank	economy	2004	2014	growth rate (%)	total (%)	world total (%)
na	World	1,272,362	2,290,294	6.1	100.0	na
1	United States	336,194	431,623	2.5	18.8	18.8
2	China	110,388	395,588	13.6	17.3	36.1
3	Germany	72,177	107,747	4.1	4.7	40.8
4	India	28,752	106,574	14.0	4.7	45.5
5	Japan	95,999	103,793	0.8	4.5	50.0
6	United Kingdom	75,119	101,536	3.1	4.4	54.4
7	France	53,375	74,269	3.4	3.2	57.7
8	Italy	42,647	70,453	5.1	3.1	60.8
9	South Korea	27,029	63,748	9.0	2.8	63.5
10	Canada	40,624	60,916	4.1	2.7	66.2
11	Spain	30,977	56,604	6.2	2.5	68.7
12	Brazil	18,814	53,152	10.9	2.3	71.0
13	Australia	26,277	52,269	7.1	2.3	73.3
14	Russia	26,869	43,487	4.9	1.9	75.2
15	Iran	4,952	36,539	22.1	1.6	76.8

Science and engineering articles by region, country: 2004 and 2014

Source: National Science Foundation: Science and Engineering Publication Output Trends: https://www.nsf.gov/statistics/2018/nsf18300/nsf18300.pdf

Reproducibility Crisis

1,500 scientists lift the lid on reproducibility

Monya Baker in *Nature,* 2016. **533** (7604): 452. 454. doi:10.1038/533452a:

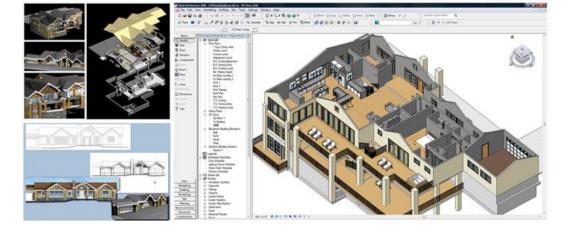
- 70% failed to reproduce at least one other scientist's experiment
- 50% failed to reproduce one of their own experiments

Failure to reproduce results among disciplines

(in brackets own results)

chemistry	87%	(64%)
biology	77%	(60%)
physics and engineering	69%	(51%)
Earth sciences	64%	(41%)

Source: © Stanford Medicine - Stanford University

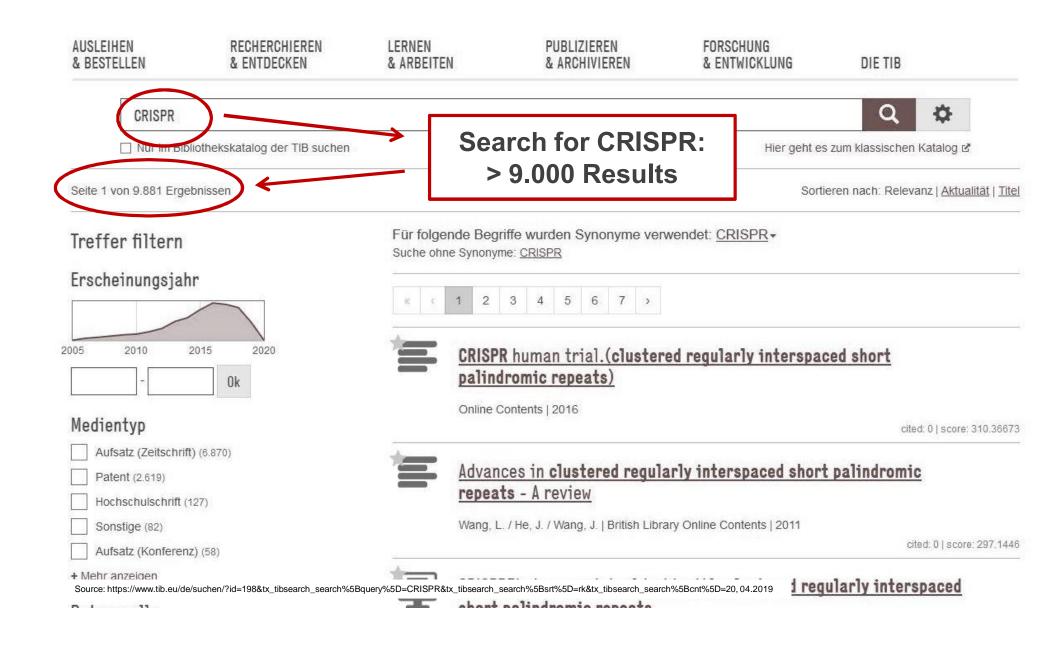

Duplication and Inefficiency

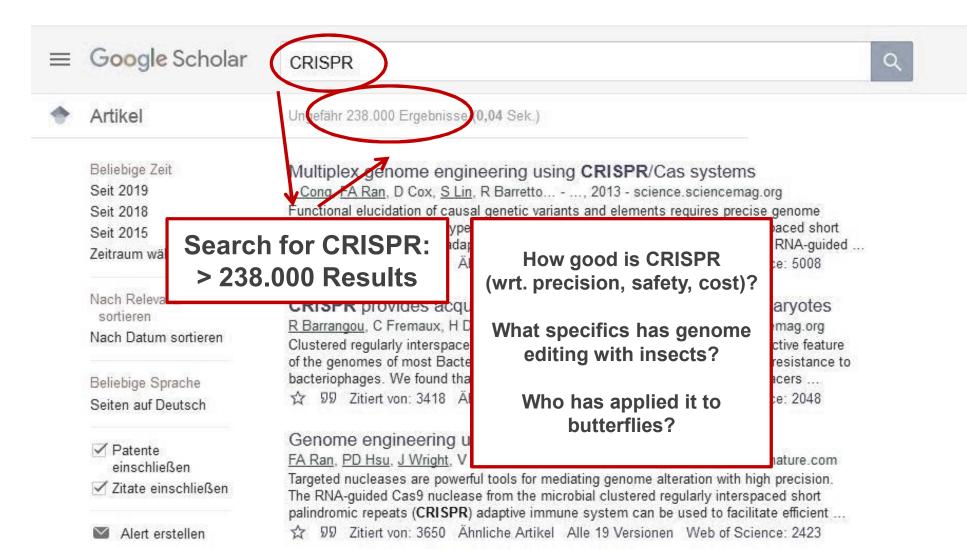
How can we avoid duplication if the terminology, research problems, approaches, methods, characteristics, evaluations, õ are not properly defined and identified?

How would you build an engine / building without properly defining their parts, relationships, materials, characteristics õ ?

Source: https://thumbs.worthpoint.com/zoom/images2/1/0316/22/revell-4-visible-8-engine-plastic_1_d2162f52c3fa3a6f72d2722f6c50b7b2.jpg

Source: http://xnewlook.com/cad-and-revit-3d-design.html/bill-ferguson-portfolio-computer-graphics-games-cad-related-3d-models-cad-and-revit-design

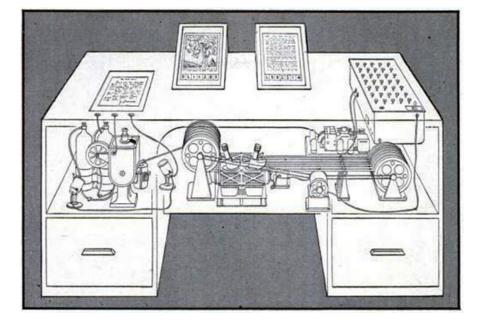

Page 11

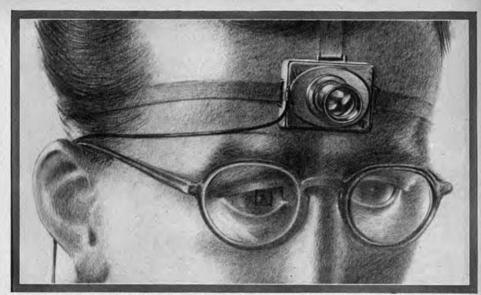


Root Cause – Deficiency of Scholarly Communication?

Lack of...

Transparency	Integratability	Machine assistance
information is hidden in text	fitting different research results together	unstructured content is hard to process
Identifyability	Collaboration	Overview
of concepts beyond metadata	one brain barrier	Scientists look for the needle in the haystack




How can we fix it?

Page 15

Realizing Vannevar Bush's vision of Memex

Source: http://photos1.blogger.com/blogger/5874/1071/1600/Memex.jpg

A SCIENTIST OF THE FUTURE RECORDS EXPERIMENTS WITH A TINY CAMERA RITED WITH UNIVERSAL-FOCUS LENS. THE SMALL SQUARE IN THE EVECLASS AT THE LEFT SIGHTS THE OBJECT

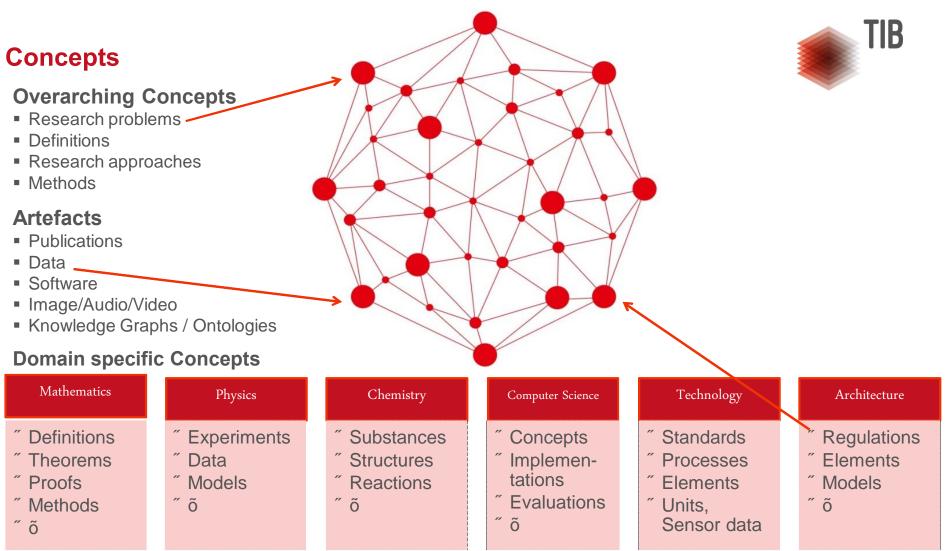
AS WE MAY THINK A TOP U.S. SCIENTIST FORESEES A POSSIBLE FUTURE WORLD IN WHICH MAN-MADE MACHINES WILL START TO THINK by VANNEVAR BUSH

DIRECTOR OF THE OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT Condensed from the Atlantic Monthly, July 1945

This has not been a scientists' war; it has been a war in which all have had a part. The scientists, burying their old professional competition in the demand of a common cause, have shared greatly and learned much. It has been exhilarating to work in effective partnership. What are the scientists to do next?

For the biologists, and particularly for the medical scientists, there can be little indecision, for their war work has hardly required them to leave the old paths. Many indeed have been able to carry on their war research in their familiar peacetime laboratories. Their objectives remain much the same.

It is the physicists who have been thrown most violently off stride, who have left academic pursuits for the making of strange destructive galgets, who have had to devise new methods for their unanticipated assignments. They have done their ear on the devices the make is reached to the terms.


Source: http://tntindex.blogspot.com/2014/10/tabletalk-vannevar-bushs-memex.html

been part of a great team. Now one asks where they will find objectives Publication has been extended far beyond our present ability to make real

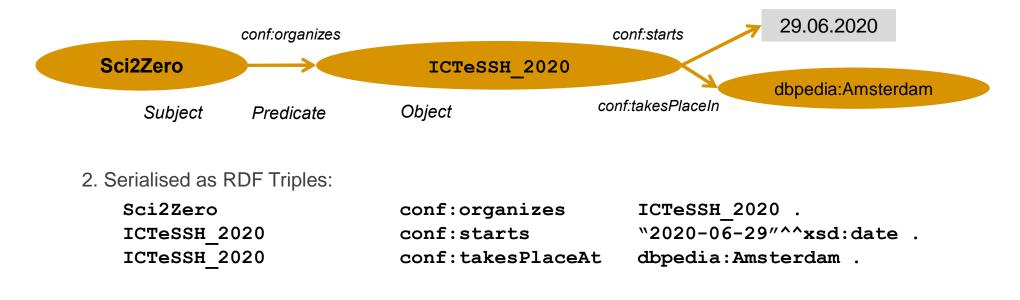
ress, and the effort to bridge between disciplines is correspondingly superficial.

Professionally our methods of transmitting and reviewing the results of research are generations old and by now are totally inadequate for their purpose. If the aggregate time spent in writing scholarly works and in reading them could be evaluated, the ratio between these amounts of time might well be startling. Those who conscientiously attempt to keep abreast of current thought, even in restricted fields, by close and continuous reading might well shy away from an examination calculated to show how much of the pre-vious month's efforts could be produced on call.

Mendel's concept of the laws of genetics was lost to the world for a gen eration because his publication did not reach the few who were capable of another and established of another source of the sourc ficant attainments become lost in the mas

Page 17

Linked Data Principles

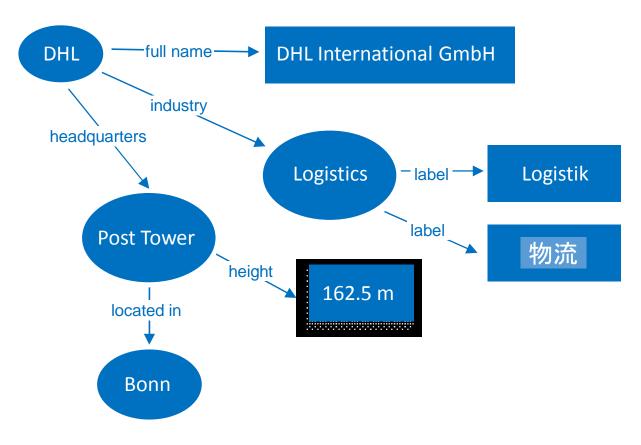

Addressing the neglected third V (Variety)

- 1. Use URIs to identify the %bings+in your data
- 2. Use http:// URIs so people (and machines) can look them up on the web
- 3. When a URI is looked up, return a description of the thing in the W3C Resource Description Format (RDF)
- 4. Include links to related things

http://www.w3.org/DesignIssues/LinkedData.html

RDF & Linked Data in a Nutshell

1. Graph based RDF data model consisting of S-P-O statements (facts)


3. Publication under URL in Web, Intranet, Extranet

TIB

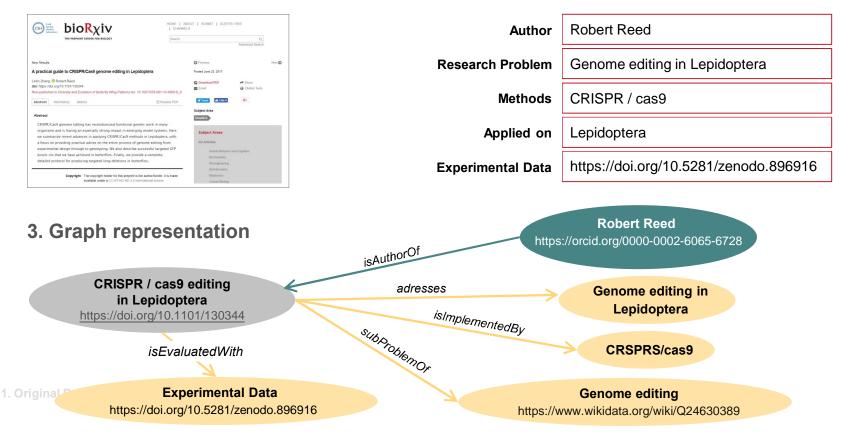
Linked Data


Creating Knowledge Graphs with RDF

Page 20

Knowledge Graphs – A definition

- Fabric of concept, class, property, relationships, entity desc.
- Uses a knowledge representation formalism (RDF, OWL)
- Holistic knowledge (multi-domain, source, granularity):
 - instance data (ground truth),
 - open (e.g. DBpedia, WikiData), private (e.g. supply chain data), closed data (product models),
 - derived, aggregated data,
 - schema data (vocabularies, ontologies)
 - meta-data (e.g. provenance, versioning, documentation licensing)
 - comprehensive taxonomies to categorize entities
 - links between internal and external data
 - mappings to data stored in other systems and databases

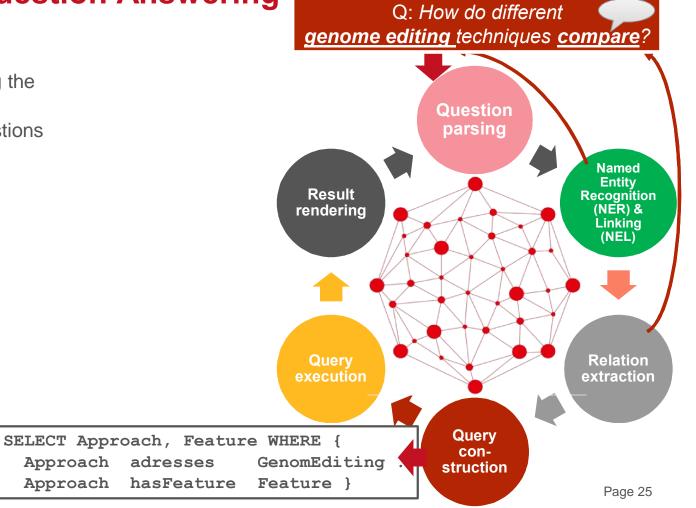


Chemistry Example: CRISPR Genome Editing

CSH Spring Harbor Laboratory bioRxiv		E ABOUT SUBMIT ALERTS/RSS CHANNELS			
THE PREPRINT SERVER FOR BIOLOGY	Search		Q Advanced Search	b	
			Auvanceu Search		
New Results		G Previous		Next 😜	
A practical guide to CRISPR/Cas9 genome editing in Lepidoptera		Posted June 22, 2017.			
Linlin Zhang, 💿 Robert Reed		Download PDF	Anare 🔿		
doi: https://doi.org/10.1101/130344 Now published in <i>Diversity and Evolution of Butterfly Wing Patterns</i> doi: 10.1007/978-8	81-10-4956-9_8	Email	Citation Tools		
Abstract Info/History Metrics	Preview PDF	y Tweet Like 0	G+		
		Subject Area			
Abstract		Genetics			
CRISPR/Cas9 genome editing has revolutionized functional genetic work in	many				
organisms and is having an especially strong impact in emerging model sy	stems. Here	Subject Areas			
we summarize recent advances in applying CRISPR/Cas9 methods in Lepide	optera, with				
Source: https://cacm.acm.org/system/assets/0002/2618/021116_Google_KnowledgeGraph.large.jpg?1476779500&1455222197	ng from	All Articles			
experimental design through to genotyping. We also describe successful ta	argeted GFP	Animal Dahardara	- 1.0 11		

Chemistry Example: Populating the Graph

2. Adaptive Graph Curation & Completion


Page 24

Exploration and Question Answering

Research Challenge:

- Intuitive exploration leveraging the rich semantic representations
- " Answer natural language questions

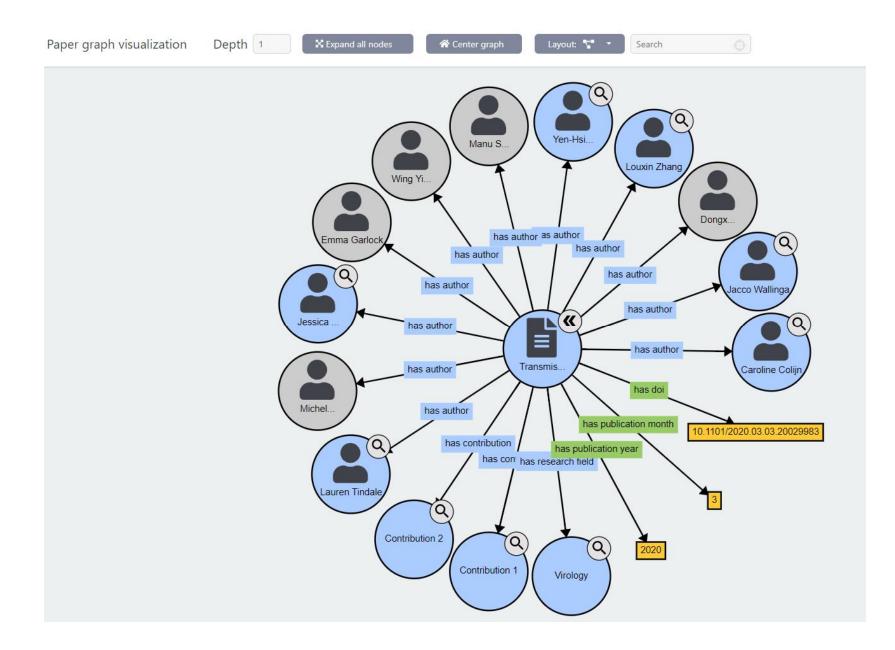
 K. Singh, S. Auer et al: <u>Why Reinvent</u> <u>the Wheel? Let's Build Question</u> <u>Answering Systems Together.</u> The Web Conference (WWW 2018).

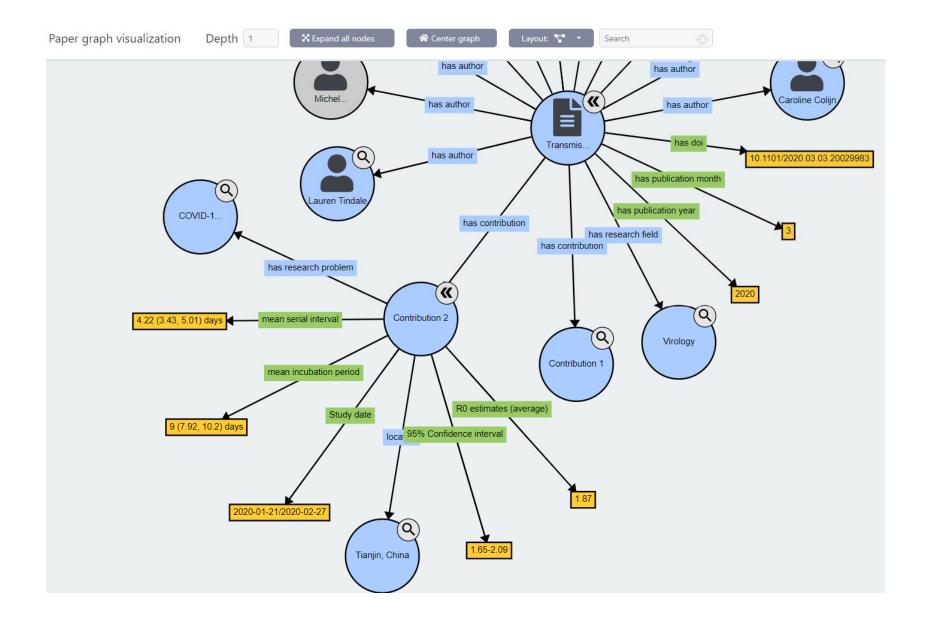
Result: Automatic Generation of Comparisons / Surveys

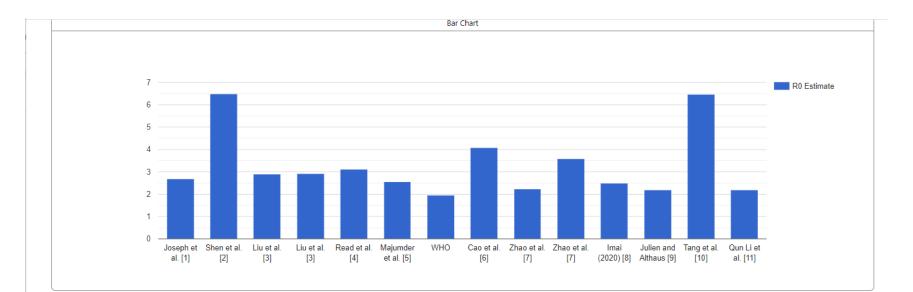
Q: How do different genome editing techniques compare?

Engineered Nucleases	Site-specificity	Safety	Ease-of-use / costs/ speed
zinc finger nucleases (ZFN)	++ 9-18nt	+	 \$\$\$: screening, testing to define efficiency
transcription activator-like effector nucleases (TALENs)	+++ 9-16nt	++	++ Easy to engineer 1 week / few hundred dollar
engineered meganucleases	+++ 12-40 nt	0	 \$\$\$ Protein engineering, high-throughput screening
CRISPR system/cas9	++ 5-12 nt	-	+++ Easy to engineer few days / less 200 dollar

LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

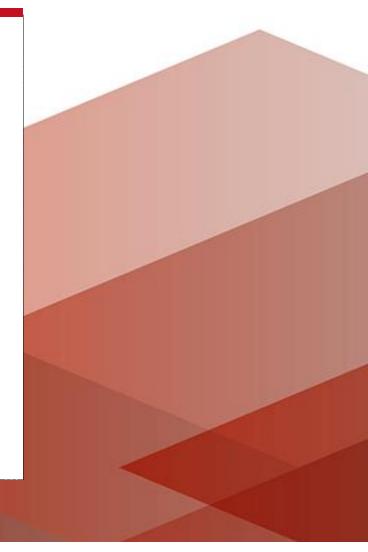



Demo: Open Research Knowledge Graph


		apers Tools 🗸 About 🗗	Search	. Q Add	paper Sign in	
Properties	Estimation of the epidemic properties of the 2019 novel coronavirus: A mathematical modeling study Contribution 1 - 2020	Estimation of the epidemic properties of the 2019 novel coronavirus: A mathematical modeling study Contribution 2 - 2020	Estimation of the epidemic properties of the 2019 novel coronavirus: A mathematical modeling study Contribution 3 - 2020	Transmission potential of COVID-19 in Iran Contribution 1 - 2020	Transmission potential of COVID-19 in Iran Contribution 2 - 2020	Estimating the generation interval for COVID-19 based on symptom onset data Contribution 1 - 2020
Has research problem	COVID-19 reproductive number	COVID-19 reproductive number	COVID-19 reproductive number	COVID-19 reproductive number	COVID-19 reproductive number	COVID-19 reproductive number
Location	Wuhan City, China	Wuhan City, China	Wuhan City, China	Iran	Iran	Singapore
Study date	2020-01-10/2020-01-23	2020-01-23/2020-02-08	2020-01-10/2020-02-08	2020-02-19/2020-02-29	2020-02-19/2020-02-29	2020-01-21/2020-02-26
R0 estimates (average)	4.38	3.41	3.39	3.6	3.58	1.27
95% confidence interval	3.63-5.13	3.16-3.65	3.09-3.70	3.2-4.2	1.29-8.46	1.19-1.36
Method	a weighted average of Exponential growth, Maximum likelihood, Sequential Bayesian, Time-dependent reproduction numbers, and SEIR model basic reproduction numbers by calculating weights from a Poisson loss function	a weighted average of Exponential growth, Maximum likelihood, Sequential Bayesian, Time-dependent reproduction numbers, and SEIR model basic reproduction numbers by calculating weights from a Poisson loss function	a weighted average of Exponential growth, Maximum likelihood, Sequential Bayesian, Time-dependent reproduction numbers, and SEIR model basic reproduction numbers by calculating weights from a Poisson loss function	generalized growth model	based on the calculation of the epidemic's doubling times: estimated epidemic doubling time of 1.20 (95% Cl, 1.05, 1.44) days	generation interval


ORKG Papers Tools V	About 💋	Search	Q	Add paper	Sign in
View paper			View pape	r 🔽 Graph view	/ 🖍 Edit
Transmission interval estim	ates suggest pre-symp	otomatic spread of CO		Wing Yin Venus Lau	
🙎 Manu Saraswat 💦 🙎 Yen-Hsiang Brian	Lee 💄 Louxin Zhang 💄 Dong	xuan Chen 🙎 Jacco Wallinga	Laroline	DOI: 10.1101/2020.03	.03.20029983
				Share this p	aper:
Contribution 1Contribution 2Research problemsCOVID-19 reproductive number		Add to comparison			
Contribution data					
95% Confidence interval	1.45-2.48				
Location	Singapore				
Mean incubation period	7.1 (6.13, 8.25) days				
Mean serial interval	4.56 (2.69, 6.42) days				
R0 estimates (average)	1.97				
Study date	2020-01-19/2020-02-26				

ORKG Papers Tools ~	About 🗹	Search	Q	Add paper	Sign in
Edit mode Every change you make is auto	omatically saved	View	paper	T Graph view	× Stop editing
 March 2020		essica Stockdale 🔹 Emma C Chen 🔒 Jacco Wallinga	Garlock	La Wing Yin Venus Lau e Colijn	1
🖍 Edit data				DOI: 10.1101/2020.	03.03.20029983
Contribution 1 7 Contribu	ution 2 +			Share this	paper: 🕜 У
Research problems		Add to comparison			
COVID-19 reproductive number	×	~			
Contribution data					
95% Confidence interval	1.45-2.48				
	+				
Location	Singapore				
	+				
Mean incubation period	7.1 (6.13, 8.25) days				
	+ Edit value				
Mean serial interval	4.56 (2.69, 6.42) days 🧪 👕				
	+				



LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

Social Science Examples

The Team

Group Leaders

Dr. Markus Stocker

Doctoral Researchers

Olga Lezhnina

Allard Oelen

PostDocs

Dr. Javad Chamanara Dr. Jennifer Doouza

Software Development

100

Kheir Eddine Farfar

Leibniz Universität Hannover

TIB

Yaser Jaradeh

European erc Research

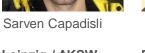
Collaborators TIB/L3S Scientific Data Management

Dr. Maria Esther Vidal

Prof. (Univ. S. Bolivar) Kemele Endris

Farah Karim

Dr. Michael Martin



Natanael Arndt

Alex Garatzogianni

Council

Shereif Eid

Collaborators InfAI Leipzig / AKSW

Conclusions

- We need to reinvent scholarly communication
- Knowledge Graphs are perfectly suited to capture research contributions in a structured and semantic way making them human and machine interpretable
- With our Open Research Knowledge Graph initiative we aim to establish a registry for research contributions
- Curation and synergistic combination of human, expert and machine intelligence is a challenge

Stay tuned

- https://tib.eu
- Consider creating an ORKG observatory for your domain
- Mailinglist/group: <u>https://groups.google.com/forum/#!forum/orkg</u>
- Open Research Knowledge Graph: <u>https://orkg.org</u>
- ERC Consolidator Grant ScienceGRAPH on the topic

European Research Council LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

https://de.linkedin.com/in/soerenauer

https://twitter.com/soerenauer

https://www.xing.com/profile/Soeren_Auer

http://www.researchgate.net/profile/Soeren_Auer

Contact Prof. Dr. Sören Auer TIB & Leibniz University of Hannover auer@tib.eu

